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Heat conduction in two dimensions

 All real bodies are three-dimensional (3D)

 If the heat supplies, prescribed temperatures and material characteristics

are independent of the z-coordinate, the domain can be approximated

with a 2D domain with the thickness t(x,y)
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Discretization into two-dimensional finite elements

 The body is discretized with a number of finite elements

 They can be triangular or quadrilateral

 Straight or curved element sides
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Today’s elements

 Melosh element

 Four nodes

 Only right angles

 Must be aligned with the 

coordinate axes

Element side (edge)

Element node at the corner 

(vertex)

Element interior

 Constant strain triangle (CST)

 Three nodes

 Arbitrary angles

 Arbitrary orientation

 Isoparametric four-node 

element

 Four nodes

 Arbitrary angles

 Arbitrary orientation
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Other useful elements

 Triangular six-node element with straight edges and 

midside nodes (Lecture 8 + 9)

 Triangular isoparametric six-node element with curved 

edges and off-midside nodes

 Isoparametric eight-noded elements with straight edges 

and midside nodes

 Isoparametric eight-noded elements with curved edges 

and off-midside nodes (Lecture 8 + 9)
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The patch test

 The main exercise of today is the patch test.  You will program its

main parts and use it to verify that the elements work properly.

 A patch test should include at least one

internal node

 The patch test should be as

unconstrained as possible, i.e. the

temperature should be specified

at only one node.

 Before we go into the equations of 2D

heat conduction, you must now start

MatLab and do a small exercise.
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Exercise: Program and plot the geometry and topology of a 

2D patch test for the Melosh, CST and ISO4 elements

Melosh etype = 1 CST etype = 3
Iso4 etype = 7

Coord = [ x1 y1 z1 ; x2 y2 y3 ; …. ] % Nodal coordinates in file “Coordinates.m”

Top = [ etype section  etc ] % for each element  in the file “Topology.m”

Plot by executing the line “visualize2D”
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Basic steps of the finite-element method (FEM)

1. Establish strong formulation

 Partial differential equation

2. Establish weak formulation

 Multiply with arbitrary field and integrate over element

3. Discretize over space

 Mesh generation

4. Select shape and weight functions

 Galerkin method

5. Compute element stiffness matrix

 Local and global system

6. Assemble global system stiffness matrix

7. Apply nodal boundary conditions 

 temperature/flux/forces/forced displacements

8. Solve global system of equations

 Solve for nodal values of the primary variables (displacements/temperature)

9. Compute temperature/stresses/strains etc. within the element

 Using nodal values and shape functions
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Step 1: Establish strong formulation for 2D heat conduction
(OP pp. 76-84)

Heat flow (flux) vector

Boundary normal

Heat flow out of the boundary (the flux) 

1D:

2D: 

q =

½
qx
qy

¾ ·
J

m2s

¸

n =

½
nx
ny

¾
jnj = 1

qn = q ¢ n = qTn
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The constitutive relation in matrix notation:

, material isotropy leads to
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Energy conservation and a time independent problem leads to: The amount of 

heat (energy) supplied to the body per unit of time must equal the amount of 

heat leaving the body per unit time:

Rearranging leads to

Q is internal 

heat supply 

[J/m3s]

Prescribed 

quantities

Gauss’ divergence theorem (OP p. 73)
Divergence:

t is the 

thickness [m]
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Written out, the strong form for stationary 2D heat 

conduction is

Insertion of the constitutive relation leads to the strong 

formulation:
Prescribed 

quantities

Boundary 

conditions
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Step 2: Establish weak formulation for 2D heat conduction
(Cook pp. 136-137, 151), (OP Chapter 5, pp. 84-86)

Multiply the strong formulation with a weight 

function v(x,y) and integrate over the domain

Prescribed 

quantities

The Green-Gauss theorem (OP p. 74)

Inserting into the first equation while replacing                           

yields
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The boundary integral is split into two terms to reflect 

the two different types of boundary conditions

Prescribed 

quantities

Insertion into the top equation followed by 

rearranging leads to the weak form of 2D heat flow

Boundary conditions Internal heat supply (heat load)
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Basic steps of the finite-element method (FEM)

1. Establish strong formulation

 Partial differential equation

2. Establish weak formulation

 Multiply with arbitrary field and integrate over element

3. Discretize over space

 Mesh generation

4. Select shape and weight functions

 Galerkin method

5. Compute element stiffness matrix

 Local and global system

6. Assemble global system stiffness matrix

7. Apply nodal boundary conditions 

 temperature/flux/forces/forced displacements

8. Solve global system of equations

 Solve for nodal values of the primary variables (displacements/temperature)

9. Compute temperature/stresses/strains etc. within the element

 Using nodal values and shape functions
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Step 3: Discretize over space

Now the domain is discretized into a number of finite 

elements. This determines the mesh coordinates and 

the element topology, i.e. the matrices coord and Top in 

our MatLab program.

Here it is illustrated with a single Melosh element.
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Step 4: Weight and shape functions

The Galerkin method is chosen. This means that the 

main variable (the temperature) and the weight function 

v(x,y) are interpolated using the same interpolation 

functions

Known shape functions 

(depends only on x and y) Unknown nodal values

Examples:
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The weak form can now be written as

Noticing that v and a are constants, rearranging yields

Because v is arbitrary the parenthesis term must vanish (equal zero)

where
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In order to be able to write the equations in a compact form the following 

terms are introduced

The equations can now be written as

Example: The Melosh heat conduction element:

The stiffness matrix

Boundary terms (boundary load vector)

Internal load vector 

Degrees of 

freedom, dof
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The definition of the heat flux was

With the finite element formulation we have

This gives us the flux within the element as



Finite Element Method

2D heat conduction

20

Example: The melosh element

Notice that Ni vary linearly along element edges.

Example:

Shape and weight functions

This ensures inter-element combatibility, i.e. no gaps 

and no overlapping:
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Assumptions: D and t are constant.

Element width: 2a, height 2b

Steps:

1. Compute B-matrix

2. Carry out matrix multiplication

3. Integrate each element of the matrix product to 

obtain K

4. Program K into the file KmeloshHeat.m

5. A test value with the parameters, 2a = 2, 2b = 1, 

t = 1.3, kxx = 4.56, kyy = 3.8  is :

Exercise: compute and program the Melosh stiffness matrix
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Example: constant heat supply between nodes 1 and 2

Boundary load vector

Prescribed term
Can only contain 

nodal values

Remember: If heat is transferred into the domain, q is negative

Can only contain values at nodes. So uniform heat supplies 

must be converted into nodal loads

Unit: J/s

Reactions
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Exercise: Calculate fb with triangular heat load

Prescribed term
Can only contain 

nodal values

Remember: If heat is transferred into the domain, q is negative

The heat load varies linearly from zero at node 2 to the 

value q3 at node 3

Steps:

1. Find the expression for the heat load as a 

function of the coordinates q(x,y) 

2. Carry out the integration as shown on the 

previous slide.
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Example: constant internal heat supply in a Melosh element

Internal load vector

Can only contain values at nodes. So internal heat supplies 

must be converted into nodal loads
Q is internal 

heat supply 

[J/m3s]

Element area  A = 4 ab
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 The assembling procedure is exactly the same as in the last lecture:

1. Determine the local stiffness matrix

2. determine the global number of dof corresponding to the local dof for the element

3. add the components of the local stiffness matrix to the rows and columns of the 

global stiffness matrix corresponding to the global dof numbers

4. repeat 1-3 until all contributions from all elements have been added.

 In MatLab this is done in assemblering.m

K(gDof,gDof) = K(gDof,gDof) + Ke;

Step 6: Assembling
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 In order to be able to create a global system matrix we need to give 

information about

 Material for each element

 Section dimensions for each element

 Coordinates for each node (and a numbering)

 Topology for each element (which nodes are in the element)

 dof numbering is given from the node numbering and number of dofs per node (one 

in this case)

 See calc_globdof.m for numbering of global dof

 ElemDof = [neDof1 GDof1 GDof2 ...]

 dof numbering of each element

 GlobDof = [Gnode1 GDof1 GDof2 ...]

 dof numbering of each node (used for plotting)

 nDof = total number of Dof
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Example of assembling the load vector

Total heat load vector 

The global matrices are assembled in exactly the same way as with the bar elements of the previous 

lecture. Here an example of the assembly of the load vector of a two element system is shown 

The thicknesses of the two 

elements are identical

Remember: If heat is 

transferred into the 

domain, q is negative
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Exercise: Program and plot the results of a 2D patch test for 

the Melosh element

t = 1.2 m, kxx = kyy = 3 J/Cms

Steps

1. Program the geometry (done earlier today)

2. Determine nodal heat supplies q3, q6, and q9

3. Determine nodal heat supply q4 and q7 (We 

want T = 0 on the left boundary, x = 0)

4. Make the appropriate programming in 

Topology.m and BoundaryConditions.m

5. Plot by executing the line “visualizeD2

Compare with the analytical solution:

Hint: on the colorplot the temperatures can be found by 

activating the figure and typing “colorbar” at the command line 
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Why use other elements than the Melosh element?

• The Melosh element must be rectangular and 

positioned along the coordinate axes

• It is therefore not very good at approximating 

boundaries not aligned with the coordinate axes

• Conclusion: The Melosh element is not very flexible

Why use triangular elements?

• Triangular elements can be rotated arbitrarily

• They can therefore approximate boundaries not aligned 

with coordinate axes well.

• It is relatively simple to make a computer code that 

meshes an arbitrary area with triangles.

Next: The constant strain triangle (CST)
• The name stems from its original development within structural mechanics

• In heat conduction analysis the name “constrant flux triangle” would be 

appropriate
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Preliminary: Natural coordinates (Area coordinates)

• For general triangular elements it has proven useful 

to derive the stiffness matrix using the so-called 

“natural coordinates” also referred to as “area 

coordinates

Point P defines three areas. These define the 

natural coordinate of the point

The following constraint applies

Examples:
Element centroid:

Node 1

Node 3
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The relation between natural and cartesian

coordinates is

In matrix notation

With the coordinate transformation matrix A

here

The element area can be found by
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Differentiation in natural coordinates
A function N (e.g. a shape function) is expressed in 

natural coordinates, N(1, 2, 3). The chain rule 

then gives us

With the coordinate transformation

we get
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Integration in natural coordinates
A polynomial function expressed in natural 

coordinates, f(1, 2, 3) can easily be integrated over 

the element area using the formula

Example:
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Shape functions for the CST-element
The shape functions for the CST-element in natural coordinates 

are very simple:

The temperature in the element interior is then given by 

The stiffness matrix is again given by

with
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Exercise: Calculate and program the stiffness matrix 

of the heat conduction CST-element

Steps

1. Determine the derivatives in the B-matrix

2. Setup the B-matrix. Think about and explain why the element 

name “constant flux element” is appropriate (hint on slide 18)

3. Carry out the matrix multiplication indicated on the previous 

slide.

4. Integrate over the element area to obtain the stiffness matrix 

K

5. Program the stiffness matrix into the file K_CST_Heat.m

6. A test value with the parameters (x1, x2, x3) = (1, 3, -1),    (y1,

y2, y3) = (0, 2, 1), t = 1.3, kxx = 4.7 and kyy = 5.1  is
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Exercise: Program and plot the results of a 2D patch test for 

the CST element

t = 1.2 m, kxx = kyy = 3 W/ Cm

Steps

1. Program the geometry (done earlier today)

2. Determine nodal heat supplies q3, q6, and q9

3. Determine nodal heat supply q4 and q7 (We 

want T = 0 on the left boundary, x = 0)

4. Make the appropriate programming in 

Topology.m and BoundaryConditions.m

5. Plot by executing the line “visualizeD2

Compare with the analytical solution:

Hint: on the colorplot the temperatures can be found by 

activating the figure and typing “colorbar” at the command line 
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The isoparametric four node element (Iso4)

• A quadrilateral element which can be distorted from 

the rectangular shape and rotated arbitrarily in the 

plane

• Introduces several important concepts in finite element 

theory, such as

• Isoparametric coordinates

• Parent and global domain

• The Jacobian matrix and the Jacobian

• Numerical integration by Gauss quadrature

• The isoparametric formulation forms the basis for 

nearly all the elements in practical use
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Parent and global domain

• For general quadrilateral elements is has proven 

useful to formulate the stiffness matrix using the 

isoparametric formulation.

• In the parent domain the element is always a 

square element with the side length 2.

• The isoparametric coordinates  and  have their 

origin at the element centroid. This means that the 

vertex (corner) nodes have the coordinates (,):  

1: (-1,-1), 2: (1,-1), 3: (1,1) and 4: (-1,1)

• In the global domain the nodes of the four node 

element have the coordinates: (x,y): 1: (x1,y1),       2: 

(x2,y2), 3: (x3,y3), and 4: (x4,y4).

• The question is “how do we connect these two 

sets of coordinates?”  (much in a similar way as we 

did with the triangle.)

Note: with the natural coordinates of the triangle the coordinate 

limits were 0  1, 2, 3  1. For the isoparametric coordinates 

they are -1  ,   1

Parent 

domain

Global 

domain
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The isoparametric coordinate transformation

• The idea is that we use the shape functions to 

interpolate the coordinates between the nodes Parent 

domain

Global 

domain
e.g.

With the shape functions:

Notice that these are the shape functions of the 

Melosh element with a = b = 1
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Temperature and flux interpolation

As usual the temperature within the element is inter-

polated from the nodal values Parent 

domain

Global 

domain

The heat flux is also still given by

with

Problem: we have to find the derivatives of the 

shape functions with respect to the global (x,y) 

coordinates, but the shape functions are expressed 

in the isoparametric (,) coordinates. To overcome 

this problem we will define B as a product of two 

matrices:
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Parent 

domain

Global 

domain

The matrix DN contains the derivatives of the shape 

functions with respect to the isoparametric coordinates

With DN the temperature derivatives within the element can 

be found by 

If we wanted the temperature derivatives the (,)-

coordinates we were done now. But we need them in the 

(x,y) system in order to determine the heat flux. The 

transformation of derivatives from the (,) system into 

the (x,y) system is carried out by the inverse of the so-

called “Jacobian matrix”, J-1
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Parent 

domain

Global 

domain

The matrix J is called “the Jacobian matrix” and it relates 

the temperature derivatives in the two coordinate 

systems

The elements of J can be found by differentiating the temperature 

with respect to (, ) by invoking the chain rule:

The Jacobian matrix

This gives us the elements of J
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Parent 

domain

Global 

domain

The inverse of J, which was needed in the expression for B,                               

,  can now be found by 

where the determinant of J, which is often called “the 

Jacobian”, is given by

The Jacobian

The Jacobian can be regarded as a scale factor that relates 

infinitesimal areas in the parent domain and the global 

domain, see (Cook pp. 206 – 207), (OP pp. 376 – 380)
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Parent 

domain

Global 

domain

The definition of the stiffness matrix was

Stiffness matrix for the Iso4 element

With the Jacobian matrix and its determinant we now have 

the tools to calculate the stiffness matrix of a 

isoparametric quadrilateral element.

The integral is non-linear and can, in general, not be 

solved analytically. Therefore we must use numerical 

integration.

As a remark it should be mentioned that the shape 

functions are still linear along the element sides. This 

means that boundary loads are distributed to the nodes 

in the same way as it was done with the Melosh element.
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Our concern is to find the following integral numerically

Numerical integration

One way of doing this is to divide the domain in n equal 

intervals of equal width W, and sum up the contribution 

from n rectangular areas with the height given by the 

function value in the centre of the intervals

A second method is analogous to the above but with 

varying interval widths Wi

Both methods will converge towards the exact integral 

when the number of intervals, n, increases.
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The position of the evaluation points xi and the size of the 

widths (also called weight factors) can be optimized with 

respect to the function that is integrated. For integrals of 

polynomials in the interval [-1 ; 1] this in known as the so-

called Gauss quadrature. Notice that this is the interval we 

are interested in with isoparametric elements as the 

isoparametric coordinates -1  ,  1. With Gauss 

quadrature we can evaluate integrals as

Gauss quadrature

with the following positions and weights
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Gauss points and weights

A polynomium of degree 2n – 1 is integrated exact with a 

Gauss quadrature of degree n.
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Gauss quadrature in two dimensions

For the calculation of the stiffness matrix we need the 

Gauss quadrature in two dimensions. This is obtained as 

follows

Example: Numerical integration of (,) with Gauss 

order n = 2, which gives 22 = 4 points:
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Exercise: Numerical integration of two functions in 2D
Steps

1. Open NumIntExc_Lec34_student.m

2. In the loop calculate the function value Φ at each Gauss point

3. Sum the integral in the variable “numint”. Remember the weight functions (see the previous slide)

4. Save the exact solution in the variable “int_exact”.

5. Start with one Gausspoint, then two, and so on..

6. Run the program by pressing F5.

What is different about the two functions?

1

1

2 3










function 1:

exact solution

1 1

1

1 1

2 2 ln5

3
d d  

 

 

  3 2

1 1 2 3       function 2:

exact solution

1 1

2

1 1

28

3
d d  
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Exercise: Calculate and program the stiffness matrix of the heat 

conduction Iso4-element

Steps

1. Open the file K_QuadIso_Heat.m

2. Setup a loop over the Gauss points

3. Initiate the stiffness matrix as zeros

4. Perform steps 5 to 9 inside a loop over the Gauss points

5. Calculate the and setup the DN-matrix

6. Calculate the Jacobian matrix

7. Calculate the determinant of the Jacobian matrix

8. Calculate the inverse Jacobian matrix

9. Calculate the integral at the current Gauss point and add it to the current value of 

the stiffness matrix, Ke

10. A test value with the parameters (x1, x2, x3, x4) = (1, 3, 3.5, -1),    (y1, y2, y3, y4) 

= (0, -1, 1 1), t = 1.3, kxx = 4.7 and kyy = 5.1  n = 2 (Gauss order)
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Exercise: Program and plot the results of a 2D patch test for 

the Iso4 element

t = 1.2 m, kxx = kyy = 3 J/Cms

Steps

1. Program the geometry (done earlier today)

2. Determine nodal heat supplies q3, q6, and q9

3. Determine nodal heat supply q4 and q7 (We 

want T = 0 on the left boundary, x = 0)

4. Make the appropriate programming in 

Topology.m and BoundaryConditions.m

5. Plot by executing the line “visualizeD2

Compare with the analytical solution:

Hint: on the colorplot the temperatures can be found by 

activating the figure and typing “colorbar” at the command line 
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Exercise: Get familiar with the program and test the 

different elements
We will now try to carry out a calculation of the temperature in the tapered beam 

from the last lecture. This time we will use 2D elements.

• Set the variable atype = 2 in main.m

• Try to run the program

• The number of elements can be controlled by changing the variable nelem_y in 

Coordinates.m

• Does the three elements of todays lecture give the same result?

• Does it make any difference what order of Gauss quadrature you use in the Iso4-element? 

(this is controlled in the file K_QuadIso_Heat.m)

• Try to take a look at how the coordinates and the topology is calculated. This might give 

you inspiration for your own program in the semester project.


