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SUMMARY

A finite element weighted residual process has been used to solve transient linear and non-linear two-dimen-
sional heat conduction problems. Rectangular prisms in a space-time domain were used as the finite elements.
The weighting function was equal to the shape function defining the dependent variable approximation. The
results are compared in tables with analytical, as well as other numerical data. The finite element method com-
pared favourably with these results. It was found to be stable, convergent to the exact solution, easily pro-
grammed, and computationally fast. Finally, the method does not require constant parameters over the entire
solution domain.

INTRODUCTION

In many instances simplifications which would reduce physical heat conduction problems to
problems depending on only one space co-ordinate and time may not be possible, and transient
conduction in more than one space dimension must be considered. For example, this would
occur when end or edge effects are significant so as to affect the desired results.

Although a great number of these two-dimensional problems have been solved analytically,
only a limited number of geometrical shapes and only those boundary conditions which can be
easily expressed mathematically can be handled. There are many transient heat conduction
problems of considerable practical value for which no analytical solution is feasible, and resort
is made to numerical and analogue techniques. This paper will consider the former only.

Several different techniques of numerical analysis of transient heat conduction problems in
two-dimensions exist. To date the finite difference and finite element techniques have been the
most prominent. For the finite difference method! these include, to name a few, the explicit
method, the implicit method, and the implicit alternating-direction method. The finite element
method was first applied by Wilson and Nickell.? Their method for analysing the unsteady flow
of heat was based on a variational principle by Gurtin.?® Richardson and Shum* used the same
variational principle and the finite element method to solve transient heat conduction problems
involving non-linear boundary conditions. Emery and Carson® and Visser® used variational
formulations in their finite element solutions to non-stationary temperature distribution prob-
lems. Other examples of the finite element method applied to transient heat conduction problems
are referenced in Zienkiewicz’ and Desai and Abel.®
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This paper discusses a simple finite element technique for solving two-dimensional linear and
non-linear transient heat flow problems. The method is a finite element weighted residual process
using finite elements in a space-time domain. Bruch and Zyvoloski® used this technique on one-
dimensional linear field problems, one of which was a heat flow problem. They give a comparison
of their finite element results with exact solutions and finite difference results.

FINITE ELEMENT FORMULATION

The two-dimensional heat conduction equation which describes the unsteady temperature
distribution in a solid in domain R (Figure 1) is governed by the following differential equation

o, ory @ |,6 or oT
a( xE;) +@(kya_y) +Q = peor (1
and subject to the conditions on the boundary surface S,
T=Ts0nS, (1a)
oT oT
—kx—a;lx—ky‘é;ly =g on S2 (lb)
oT oT '
—kyo—l,—k, o1 = oT—T,
k., e I,—k, 3 I, = ) on S (1¢)
and the initial condition
T(X, ¥, 0) = TO(x, y) (ld)

where S = S; + 5, + S5, S, is the part of the boundary on which T is prescribed ; S, is the part of
the boundary on which g, the intensity of heat input, is prescribed ; S; is the part of the boundary
on which «(T— T;) is prescribed ; T(x, y, t) is the temperature in the solid ; k, and k, are specified
thermal conductivities where x and y are the principal directions of the conductivity tensor; ¢ is
the specific heat; p is the density; Q is the externally applied heat flux; Ty is a given boundary
surface temperature ; Ty is the initial temperature ; [, and [, are the direction cosines of the outward
normal to the boundary surface; a is the heat transfer coefficient ; and T, is the temperature of the
surroundings.
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Figure 1. Solution domain
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The approach used to solve equation (1) subject to the auxiliary conditions, equations (1a), (1b),
(1c),and (1d)is similar to that suggested by Zienkiewiczand Parekh.!® A finite element representa-
tion based on the Galerkin principle is obtained without recourse to variational theorems. Divid-
ing the solution domain into finite elements in space and time (Figure 2), the temperature is
approximated within each element by

T(x,y,1) = Y Ni(x, y, )Ty )
1

where N are the usual shape functions defined piecewise, element by element ; I is a summation
subscript ; T; is the discrete nodal representation of T(x, y, t); and m is the number of nodes in
an element.

X

Figure 2. Solution domain divided into rectangular prismatic elements in space and time

Using the weighted residual process in which the weighting function is equal to the shape
function defining the approximation, the Galerkin representation for the heat problem (equation

(1) is
of, er\ a{, oT oT
J‘R, Nl[a—x(kx—a;) +a}(kya—y) + Q—pCE:I dxdydt=0 3

where R’ is the finite element solution domain, and dR’ = dx dy d¢. Using integration by parts
on the first and second terms in equation (3), the equation simplifies to

dN, 0T ON, oT T
_J [k ! '————N,Q+N,pc%t—

™ 5;+ ya—y FR ]dxdydt
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—| Ng dS'z—J No(T-T)dS5 =0 @)
53 S3

where §) and S} are segments of the external surface area S’ of the finite element solution region
(see Figure 2). Inserting the temperature approximation, the Ith equation of the simultaneous
equations that will allow the solution for the n values of T; is

ON; 0 [& ON; 0 |& J[(&
- k1~ r = - e
xdxdydt—f N,qu;—f N,(ZN,T,—’I;) ds, = 0 5)
S5 S5 1

The resulting system will consist of n linear algebraic equations in n unknown.

NUMERICAL SOLUTIONS

The technique to solve the problem described by equation(5) in the finite element network shown
in Figure 2 is as follows.?'!! Since values of temperature are known at t,, values at £, = t,+At
can be obtained by summing around the nodes at this latter step and then solving the system of
simultaneous linear algebraic equations that results. At each new time step, an identical procedure
is used until a required time is reached.

This technique will be applied to three examples whose solution domain will be square (this,
however, is not a restriction on the method) and where Q and « are equal to zero with ¢ = 1.0
Btu/(m? °F).

The temperature approximation using rectangular prisms as the elements in the finite element
method and linear shape functions within an element is

T(x,y,t) = 1+ U +nA+ DT +5(1 = A+ + ) T+5(1 -1 —n) 1+ T,
+31+ O =+ )T +31+ U+ (1 - )T, +3(1 - A +n)(1-)T,
+31-HU -1 =0T, +3(1+ A —n(A =0T, = N,T,+N,T,
+N T+ NT;+N,T,+N,T,+N,T,+N,T,

where & = 2(x—x,)/(Ax); 1 = 20—y /(AY); { = 2(t—t)/(At); x,,V.,t. = co-ordinates of the
centroid of each element; T, T;, T;, T}, T,,, T,,, T, T, = values of temperatures at the appropriate
nodal points (Figure 2); N;, N;, Ny, N;, N,,, N,, N,, N, = shape functions ; Ax = x-co-ordinate
spacing; Ay = y-co-ordinate spacing; At = t-co-ordinate spacing; and i, j, k, [, m, n, 0, p = node
numbers.

The first two-dimensional heat conduction problem to be solved is one governed by equation

(1) and subject to the following boundary and initial conditions

T0,y,t) = T(x,0,t) = T(L,,y,t) = T(x,L,,t) = 0 (6a)
and
T(x,y,0) = 30 (6b)

where L, and L, are the lengths of the solution domain in the x and y directions, respectively.
The analytical solution for this problem is

© © ; k 2.2 k 2.2
T(x,y,t)= ), ) A,sin nzxsin%]exp [—(—x—:&i+ yi; )t:| ¥}

n=1 j=1 X y
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where
_ 4(30)

A [(=D)"—1][(-1yY-1] (7a)

njn?

Table 1 lists the analytical results using equation (7) for the square domain 0 < x < 3-0m,
0 <y<30m, with k, =k, = 1.25Btu/(hr m °F), Ax = Ay = 0-3m, and ¢t = 1-2 hr. Tables 11
and II1 list the finite element weighted residual solution for the same problem using two different
time steps At = 0-1 hr and At = 0-05 hr, respectively.

Table 1. Temperatures at ¢ = 1-2 hr obtained using the analytical solution equations (7)

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0173 0329 0453 0533 0560 0533 0453 0329 0173 0000
0000 0329 0626 0862 1013 1065 1.013 0862 0626 0329 0000
0000 0453 0862 1186 1394 1466 1394 1186 0862 0453  0.000
0000 0533 1013 1394 1639 1.723 1639 1394 1.013 0553  0-000
0000 0560 1065 1466 1723 1812 1.723 1466 1065 0560  0-000
0000 0533 1013 1394 1639 1723 1.639 1394 1.013 0533  0-000
0000 0453 0862 1186 1394 1466 1394 1186 0862 0453  0-000
0000 0329 0626 0862 1013 - 1.065 1013 0862 0626 0329 0000
0000 0173 0329 0453 0533 0560 0533 0453 0329 0173 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0-000

Table II. Temperatures at t = 1-2 hr obtained using the finite element technique with At = 0-1 hr

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0-000
0000 0201 0383 0527 0620 0652 0620 0527 0383 0201 0000
0000 0383 0728 1.003 1179 1239 1179 1003 0728 0383 0000
0000 0527 1.003 1.380 1622 1706 1622 1380 1.003 0527 0000
0000 0620 1179 1622 1907 2005 1907 1622 1179 0620 0000
0000 0652 1.239 1.706 2005 2108 2005 1706 1239 0652  0-000
0000 0620 1179 1.622 1907 2005 1907 1622 1179 0620 0-000
0000 0527 1003 1.380 1.622 1.706 1622 1.380 1.003 0527 0000
0000 0383 0728 1003 1179 1239 1179 1.003 0728 0383 0000
0000 0201 0383 0527 0620 0652 0620 0527 0383 0201 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Table 1I1. Temperatures at t = 1.2 hr obtained using the finite element technique with At = 0-05 hr

0-000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0185 0352 0485 0570 0599 0570 0485 0352 0185 0000
0000 0352° 0670 0922 1.083 1139 1083 0922 0670 0352 0000
0000 0485 0922 1268 1.491 1.568  1.491 1.269 0922 0485 0000
0000 0570 1083  1-491 1753 1.843 1753 1491 1.083 0570 0000
0000 0599 1139 1568 1843 1938 1843 1.568 1139 0599 0000
0000 0570 1083 1491 1.753  1.843 1753 1491 1083 0570  0-000
0-000 0485 0922 1.268 1491 1.568  1.491 1269 0922 0485 0000
0000 0352 0670 0922 1083 1139 1.083 0922 0670 0352 0-000
0000 0185 0352 0485 0570 0599 0570 0485 0352 0185  0-000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
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A second example will be one governed by equation (1) and subject to the initial condition,
equation (6b), and the following boundary conditions

T(x,0,8) = T(Ly, y,2) = T(x, L,,1) = 0 (82)

and
oT
0x

The analytical solution for the problem is

e @n — Dnx . jmy ko@n—1yn?  k,j'n’
T(x, y, 1) = ";1 j;l B, cos T L, exp v + % t )
where '
8(30) ;
B - _1 n+2r¢ 1 J__ 1
"= i2n— 1)( (-1 1] (9a)

Table IV lists the analytical results using equations (9) for the square domain 0 < x < 3-:0m,
0 < y < 30m, with k, = k, = 1.25 Btu/(hr m °F), Ax = Ay = 0-3m, and ¢t = 1-2 hr. Tables V
and VI list the finite element weighted residual solution for the same problem using two different
time steps At = 0-1 hr and At = 0-05 hr, respectively.

Table IV. Temperatures at t = 1.2 hr obtained using the analytical solution equations (9)

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
1-899 1878 1.815 1710 1.563 1377 1153 0897 0614 0312  0-000
3612 3572 3452 3252 2973 2618 2193  1.705 1.167 0593  0-000
4972 4916 4751 4476 4092 3604 3018 2.347 1606 0816  0-000
5844 5780 5585 5261 4810 4237 3.548 2759 1888 0959  0.000
6-145 6077 5872 5532 5058 4455 3731 2901 1.985 1.009 0000
5844 5780 5585 5261 4810 4237  3.548 2759 1888 0959  0.000
4972 4916 4751 4476 4092 3.604 3.018 2347 1606 0816  0-000
3612 3.572 3452 3252 2973 2618 2193 1.705 1167 0593  0-000
1.899 1878 1815 1.710 1563 1377 1153 0897 0614 0312  0.000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Table V. Temperatures at ¢ = 1.2 hr obtained using the finite element technique with At = 0-1 hr

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0-000
2028 2006 1940 1830 1677 1480 1.242 0967 0663 0337 0000
3-857 3815 3690 3482 3189 2815 2362 1.840 1261 0641  0-000
5308 5251 5079 4792 4390 3874 3251 2533 1736 0882 0000
6240 6173 5971 5633 5160 4554 3822 2977 2040 1.037 0000
6561 6491 6278 5923 5426 4788 4019 3131 2145 1.091 0000
6240 6173 5971 5633 5160 4554  3.822 2977 2040 1037  0-000
5308 5251 5079 4792 4390 3874 3251 2533 1.736  0-882  0-000
3-857 3815 3690 3482 3189 2815 2362 1840 1261 0641 0000
2.028 2006 1940 1830 1-677. 1480 1.242 0967 0663 0337  0-000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0-000
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Table VI. Temperatures at ¢ = 1.2 hr obtained using the finite element technique with At = 0-05 hr

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0-000
1.951 1.920 1865 1.758 1609 1418 1189 0925 0633 0322 0000
3711 3670 3548 3344  3-.060 2697 2-261 1760 1205 0612  0-000
5107 5051 4883 4603 4212 3713 3112 2422 1658 0843  0-000
6004 5938 5741 5411 4951 4364 3659 2847 1950 0991  0-000
6313 6244 6036 5690 5206 4589 3847 2994 2050 1.042  0-000
6004 5938 5741 5411 4951 4364 3659 2847 1950 0991  0-000
5-107 5051 4883 4603 4212 3713 3112 2422 1658 0843  0.000
3711 3670 3.548 3344 3060 2697 2261 1760 1205 0612  0-000
1951 1929 1865 1758 1.609 1418 1189 0925 0633 0322 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0-000

The last example will be one governed by equation (1) and subject to the following boundary
and initial conditions

T(L,,y.1) = T(x, L,, 1) = 1.0 (10a)
0TO,y,1) _ 9T(x,0,1) _
> - oy 00 (10b)
and
T(x, ,0) = 00 (10¢)

This example describes the unsteady heat conduction in a long bar of square cross-section. In
order to check these results with those of Carnahan et al,' who used an implicit alternating
direction finite difference method, it is assumed that all the constants are 1-0 and the dependent
and independent variables are dimensionless in equations (1), (10), and (11). The analytical
solution for this problem is

(2n Dnx  (2j—Dny k.(2n—1)*n?
-1 _[den
T(x, y,?) 0+"Z1 121 C,co TR L exp g

122
i)
y

where

16-0(—1-0)(— 1"t (—1y*!
*2n—1)(2j—1)

Table VI lists the analytical results using equations (11) for the square domain 0 < x < 1.0,
0<y<10,withk, = k, = 1.0,Ax = Ay = 0-1,and t = 0-75. Table VIII lists the finite element
weighted residual solution for the same problem using a time step At = 0-05. Table IX lists the
results of Carnahan et al' who used an implicit alternating direction finite difference method
with the same time step.

The finite element scheme used in the above examples is an implicit scheme and is stable. For
the element size used, the results check closely with the analytical results, e.g. in the second
example using a At = 0-05 hr, the maximum deviation from the analytical results was about 2-73
per cent. By decreasing the element size, the finite element solution will converge to the exact
solution. This can be seen from comparing Tables II and III with Table I, and Tables V and VI
with Table IV in which only the time step size was decreased.

C,=

(11a)
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Table VII. Dimensionless temperatures at ¢ = 0-75 obtained using the analytical solution Equations (11)

0960 0960 0962 0964 0968 0972 0976 0982 0988 0994 1000
0960 0961 0962 0965 0968 0972 0977 0982 0988 0994 1000
0962 0962 0964 0966 0969 0973 0978 0983 09838 0994 1.000
0964 0965 0966 0968 0971 0975 0979 0984 0989 099  1.000
0968 0968 0969 0971 0974 0977 0981 0985 0990 0995 1.000
0972 0972 0973 0975 0977 0980 0983 0987 0991 099  1.000
0976 0977 0978 0979 0981 0983 098 0989 0993 0996  1.000
0982 0982 0983 0983 0985 0987 0989 0992 0994 0997 1000
0988 0988 0988 0989 0990 0991 0993 0994 099 0998  1.000
0994 0994 0994 0994 0995 09% 09% 0997 0998 0999  1.000
1000 1.000 1.000 1.000 1.000 1000 1000 1.000 1000 1000 1000

Table VIII. Dimensionless temperatures at ¢ = 0-75 obtained using the finite element technique with
At = 005

0953 0953 0955 0958 0962 0967 0972 0979 0985 0993 1000
0953 0954 0956 0958 0962 0967 0973 0979 098 0993 1000
0955 095 0957 0960 0964 0968 0974 0980 098 0993  1.000
0958 0958 0960 0962 0966 0970 0975 0981 0987 0993 1000
0962 0962 0964 0966 0969 0973 0977 0983 0988 0994  1.000
0967 0967 0968 0970 0973 0976 0980 0985 0990 0995 1.000
0972 0973 0974 0975 0977 0980 0984 0987 0991 099  1.000
0979 0979 0980 0981 0983 0985 0987 099 0993 0997 1.000
0985 098 0986 098 0988 0990 0991 0993 0995 0998 1.000
0993 0993 0993 0993 0994 0995 0996 0997 0998 0999  1:000
1000 1.000 1000 1.000 1000 1.000 1.000 1000 1000 1000  1-000

Table [X. Dimensionless temperatures at ¢ = 0-75 obtained by Carnahan et al' usingan implicit alternating
direction finite difference method with At = 0-05

0960 0961 0962 0964 0968 0972 0976 0982 0987 0994  1.000
0961 0961 0962 0965 0968 0972 0977 0982 0987 0994  1.000
0962 0962 0964 0966 0969 0973 0978 0983 0988 0995 1.000
0964 0965 0966 0968 0971 0975 0979 0984 098 0995 1000
0968 0968 0969 0971 0974 0977 0981 098 0990 0995 1.000
0972 0972 0973 0975 0977 0980 0983 0987 0991 099  1.000
0976 0977 0978 0979 0981 0983 098 0990 0992 0997 1.000
0982 0982 0983 0984 0986 0987 099 0992 0994 0997  1.000
0987 0987 0988 0988 0990 0991 0992 0994 09% 0998  1.000
0994 0994 0995 0995 0995 099 0997 0997 0998 0999  1.000
1000 1.000 1000 1000 1000 1000 1-.000 1.000 1000 1000 1.000

As is evident from Tables VIII and IX, both the finite element technique and the implicit
alternating direction finite difference method compare within a fraction of a per cent with the
analytical results.

Since both the implicit alternating direction finite difference method and the finite element
method used on example three are stable methods, they exhibited, for the rather large time step
used, the phenomenon of giving impossible temperatures, greater than 1, just inside the surface
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of the bar at the end of the first time step.’ An oscillation of decreasing amplitude in the tempera-
ture took place for a number of time steps and then disappeared. The amplitudes of the tempera-
tures in the oscillations for the finite element case were less and disappeared sooner than for the
finite difference method.

As another example of the application of the technique, the following problem with sharp
corners in the boundary is investigated, see Figure 3. Consider finding T(x, y, t) satisfying the
equation

orT

V2T = o (12)

in the domain R, shown in Figure 3, with the boundary conditions
T(0, y, 1) = 1,000 (12a)
T1,y,0)=0 (12b)

and dT/0n = 0 on all other boundaries, where 8/0n is the derivative normal to the boundary.
The initial condition is a small time solution in a plane medium and is taken to be

T(x, y,0) = erfc (2%/:) (12¢)

where ¢ = 0-0005 and is equivalent to one time step in the numerical solutions that follow.

y
(010'5) (110'5)
R
7=1000|  (03,02) (07,02) =0
0 03,0 07,0) 1,00 *

Figure 3. Solution domain

G. E. Bell'? presents a method for treating the singularities which occur in the solution to this
problem due to the sharp corners in the boundary. His method is essentially an extension of the
method due to Motz'? for solving elliptic problems and approximates to the analytical form of
the singularity in terms of neighbouring function values at each time step. His method is used in
conjunction with the simple explicit finite-difference scheme and subsequently the overall method
is explicit.

Bell’s!2? results (using 5 term approximation, 6 term approximation, and simple explicit
schemes) are given in Table X along with results obtained herein using the finite element space-
time co-ordinate method for the x and y spacings and time step shown.

A second example solved by Bell'? is that shown in Figure 4. Here the singularities are closer
together and this severely restricts the number of terms that can be used in the approximation.
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Table X. Solution corresponding to a time of 0-1 sec (200 time steps)

842| 842| 688| 687 | 540| 539 | 404 403 287 286 192 192 120 120 68 68 30 30
842| 842 688| 686 | 540| 538 403 | 403 286 | 285 192|191 120|119 68| 67 30 |30
846 | 845 694 692 | 546 | 544 [ 408 | 406 288 | 287 192 [ 191 119|119 66 | 66 29129
846 | 845| 694 | 692 545{ 5441 407 | 406 287|287 191 {190 118 [ 117 66 | 65 29 129
856 855| 714 711 | 568 | 565 | 418 | 416 291 (290 190 [ 190 112|112 60 | 61 26 |27
857 856 | 715| 713 | 5661 566 | 416 | 417 290 | 289 190 [ 188 112|111 59 | 59 26 |25
874 | 871 | 756 | 749 | 635 622 | 427 | 423 2931292 189 | 187 88 {91 46 | 48 21 |2t
875| 8731 758 755 635 634 424 425 291 291 188 186 86 |86 45 |45 20 120
891 | 888 | 801 [ 795 | 762 | 752 38 |41 30 (31 15 |16
892 | 890 | 805 | 800 | 767 | 762 36 |36 28 129 14 |15
898 | 895 | 818 | 813 | 787 | 780 29 | 31 24 |25 13 {13
899 897 822 817 791 787 27 28 23 23 12 13

Sterm | Simple

approx.| Explicit

6 term | Finite element

approx.| (space-time

co-ordinates) Ax = Ay = 005
At = 0-0005
y
(0,05) (1,0-5)
R
7=1000 7=0
(04,01 (06,04)
0 (0-4,0) (0-6,0) (1,00 °

Figure 4. Solution domain
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However, using a point configuration similar to the one he used on the previous example, he
obtained the results shown in Table XI. These results are approximately equal to those he¢
obtained using a 6 term approximation and a mesh, Ax = Ay = 0-025.

Also tabulated in Table XI are results obtained by Bell!2 using the standard explicit method, by
Wilson and Nickell? using a finite element scheme in which triangular elements of side 0-1 with
linear shape functions were used, and by the finite element techniques given herein.

If k, = ¢, T and k, = ¢, T are inserted into equation (1), it becomes the non-linear partial
differential equation

d oT\ 0 oT oT
a(%Ta) +5;('//2TE)+Q =peg (13)

where i, and y, are assumed to be constants. Take ¥, = ¥, = 1.0(Btu/hrm°F?), Q = 0,
pc = 1.0 (Btu/m? °F), and the following auxiliary conditions

T(0,y,t) = T(x,0,t) = T(L,,y,t) = T(x,L,,t) = 1-0 (13a)
and
T(x,y,0) =01 (13b)

The system of non-linear algebraic equations that results from the application of the finite element
scheme was solved using a computer program given by Powell.'* The results are presented in
Tables XII and XIII for ¢t = 0-2 hr and ¢t = 0-4 hr, respectively.

Table XI. Solution corresponding to a time of 0-1 sec with At = 0-0005
535 533 468 466 402] 400 337 336 277| 276 223|223 176| 175 137| 136 106 105

536 | 534 408 | 400 282 1277 178 | 176 110 | 105

546 | 544 482 | 481 414 |413 343 | 345 279 |278 221 (218 170 |168 129 |128 100 | 99

560 | 557 506 | S03 449 {447 347 | 347 279 |278 219 {217 148 (147 114 (114 92 |92

555] 556 446 | 446 285 279 156 | 147 100 |92
574| 568 533|524 515|509 1051107 98 | 101 84 |85
578 572 541 534 527 521 98 { 99 93 |94 81 |83
571 565 505 522 118 99 90 87
6 term approx. Finite element
Ax = Ay = 0-05 (Space-time co-ordinates)
Ax = Ay = 0-05
Finite element Finite element

(Wilson & Nickell) | (Space-time co-ordinates)
Ax =Ay =01 Ax = Ay =01
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Table XII. Temperature at ¢t = 0-2 hr obtained using the finite element technique with
At = 0-1hr

1.000 1-000 1-000 1.000 1.000 1000 1-000 1-000
1.000 0-944 0-889 0-845 0-845 0-888 0-943 1-000
1.000 0-892 0-776 0-674 0-673 0774 0-891 1-000
1.000 0-853 0-683 0-519 0-516 0-679 0-852 1-000
1-000 0-853 0-682 0-513 0-510 0-677 0-852 1-000
1.000 0-896 0-784 0-677 0-675 0-780 0-896 1000
1.000 0-950 0-904 0-859 0-858 0-902 0-950 1-000
1.000 1-000 1.000 1.000 1.000 1-000 1.000 1-000

Table XIII. Temperature at t = 0-4 hr obtained using the finite element technique with
At = 0-1hr

1.000 1.000 1.000 1-000 1-000 1-000 1-000 1.000
1.000 0-988 0-979 0-973 0973 0979 0-988 1.000
1.000 0-980 0-964 0-954 0954 0-964 0-980 1.000
1.000 0976 0-957 0-943 0-943 0-956 0-976 1.000
1.000 0976 0-958 0-944 0-944 0-958 0-976 1.000
1.000 0982 0-968 0-957 0-957 0-968 0-982 1.000
1-000 0-991 0-984 0-978 0-978 0-984 0-991 1.000
1.000 1.000 1.000 1.000 1-000 1-000 1.000 1.000

CONCLUSIONS

A solution has been given for two-dimensional linear and non-linear transient heat conduction
problems using a finite element weighted residual process. The solution domain was divided
into finite elements having space-time co-ordinates. The results for several examples compare
favourably with the corresponding analytical and numerical results. This method is flexible in
that it does not require constant parameters over the entire solution domain and isoparametric
elements'® can be used. Furthermore, the method is easily programmed, stable, computationally
fast, and converges to the exact solution.
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APPENDIX

Notation

nction identifier
nction identifier
unction identifier
¢ = Specific heat

i = Node number

j = Node number

u
u

A,=F
B,=F
C,=F
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k = Node number
k, = Thermal conductivity in x-direction
k, = Thermal conductivity in y-direction
L, = Length of solution region in x-direction
L, = Length of solution region in y-direction
I, = Direction cosine
I, = Direction cosine
I = Node number
m = Node number
N; = Shape function
Ni,N;j, Ny, N;,N,,N,,N,, N, = Shape functions
n = Node number
o0 = Node number
p = Node number
Q = Externally applied heat flux
q
R

-

= Intensity of heat input
= Solution domain
R’ = Finite element solution domain
S = Boundary surface
S.,5,,8; = Lengths of boundary surface
S’ = External surface area of the finite element solution region
1,55, 8% = Segments of external surface area
T = Temperature
T, = Temperature of the surroundings
.1, T, T,T,,T, T, T, = Value of temperature at appropriate nodal points
Ts = Given boundary surface temperature
t = Time axis
t. = Distance to centroid in t-direction
x = Co-ordinate axis
x. = Distance to centroid in x-direction
y = Co-ordinate axis
y. = Distance to centroid in y-direction
o = Heat transfer coeflicient
{ = t-direction shift of axis to centroid of the rectangular prism

element

¢ = x-direction shift of axis to centroid of the rectangular prism
element

n = y-direction shift of axis to centroid of the rectangular prism
element

p = Density

¥,. ¥, = Constants
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