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SUMMARY 

A finite element weighted residual process has been used to solve transient linear and non-linear two-dimen- 
sional heat conduction problems. Rectangular prisms in a space-time domain were used as the finite elements. 
The weighting function was equal to the shape function defining the dependent variable approximation. The 
results are compared in tables with analytical, as well as other numerical data. The finite element method com- 
pared favourably with these results. It was found to be stable, convergent to the exact solution, easily pro- 
grammed, and computationally fast. Finally, the method does not require constant parameters over the entire 
solution domain. 

INTRODUCTION 

In many instances simplifications which would reduce physical heat conduction problems to 
problems depending on only one space co-ordinate and time may not be possible, and transient 
conduction in more than one space dimension must be considered. For example, this would 
occur when end or edge effects are significant so as to affect the desired results. 

Although a great number of these two-dimensional problems have been solved analytically, 
only a limited number of geometrical shapes and only those boundary conditions which can be 
easily expressed mathematically can be handled. There are many transient heat conduction 
problems of considerable practical value for which no analytical solution is feasible, and resort 
is made to numerical and analogue techniques. This paper will consider the former only. 

Several different techniques of numerical analysis of transient heat conduction problems in 
two-dimensions exist. To date the finite difference and finite element techniques have been the 
most prominent. For the finite difference method' these include, to name a few, the explicit 
method, the implicit method, and the implicit alternating-direction method. The finite element 
method was first applied by Wilson and Nickell.' Their method for analysing the unsteady flow 
of heat was based on a variational principle by G ~ r t i n . ~  Richardson and Shum4 used the same 
variational principle and the finite element method to solve transient heat conduction problems 
involving non-linear boundary conditions. Emery and Carsons and Visser6 used variational 
formulations in their finite element solutions to non-stationary temperature distribution prob- 
lems. Other examples of the finite element method applied to transient heat conduction problems 
are referenced in Zienkiewicz' and Desai and Abel.' 
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This paper discusses a simple finite element technique for solving two-dimensional linear and 
non-linear transient heat flow problems. The method is a finite element weighted residual process 
using finite elements in a space-time domain. Bruch and Zyvoloski’ used this technique on one- 
dimensional linear field problems, one of which was a heat flow problem. They give a comparison 
of their finite element results with exact solutions and finite difference results. 

FINITE ELEMENT FORMULATION 

The two-dimensional heat conduction equation which describes the unsteady temperature 
distribution in a solid in domain R (Figure 1) is governed by the following differential equation 

aT 

and subject to the conditions on the boundary surface S,  

aT aT 
- k x - l x - k y - l y  = q on S ,  

ax aY 
aT aT 

- k x - l x - k y - - l y  = a(T-T,) on S ,  ax aY 

and the initial condition 

T ( X ,  Y ,  0) = To(& Y )  (Id) 
where S = S1 + S 2  + S 3  ; S1 is the part of the boundary on which T is prescribed ; S2  is the part of 
the boundary on which q, the intensity of heat input, is prescribed ; S3  is the part of the boundary 
on which a(T- T,) is prescribed; T(x, y ,  t )  is the temperature in the solid; k ,  and k ,  are specified 
thermal conductivities where x and y are the principal directions of the conductivity tensor ; c is 
the specific heat ; p is the density ; Q is the externally applied heat flux ; Ts is a given boundary 
surface temperature ; To is the initial temperature ; 1, and 1, are the direction cosines of the outward 
normal to the boundary surface ; a is the heat transfer coefficient ; and T,  is the temperature of the 
surroundings. 

t y  

1 X 

Figure 1. Solution domain 
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The approach used to solve equation (1) subject to the auxiliary conditions, equations (la), (lb), 
(lc), and (Id) is similar to that suggested by Zienkiewiczand Parekh." A finite element representa- 
tion based on the Galerkin principle is obtained without recourse to variational theorems. Divid- 
ing the solution domain into finite elements in space and time (Figure 2), the temperature is 
approximated within each element by 

where N ,  are the usual shape functions defined piecewise, element by element ; I is a summation 
subscript ; T,  is the discrete nodal representation of T(x, y, t) ; and rn is the number of nodes in 
an element. 

I/. 
Figure 2. Solution domain divided into rectangular prismatic elements in space and time 

Using the weighted residual process in which the weighting function is equal to the shape 
function defining the approximation, the Galerkin representation for the heat problem (equation 
(1)) is 

where R' is the finite element solution domain, and dR' = dx dy dt. Using integration by parts 
on the first and second terms in equation (3), the equation simplifies to 

at 
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where S2 and S3 are segments of the external surface area S of the finite element solution region 
(see Figure 2). Inserting the temperature approximation, the Zth equation of the simultaneous 
equations that will allow the solution for the n values of T,  is 

The resulting system will consist of n linear algebraic equations in n unknown. 

NUMERICAL SOLUTIONS 

The technique to solve the problem described by equation{5) in the finite element network shown 
in Figure 2 is as  follow^.^^" Since values of temperature are known at t o ,  values at t, = to +At 
can be obtained by summing around the nodes at this latter step and then solving the system of 
simultaneous linear algebraic equations that results. At each new time step, an identical procedure 
is used until a required time is reached. 

This technique will be applied to three examples whose solution domain will be square (this, 
however, is not a restriction on the method) and where Q and cc are equal to zero with c = 1.0 
Btu/(m3 O F ) .  

The temperature approximation using rectangular prisms as the elements in the finite element 
method and linear shape functions within an element is 

T(x,y,t) = itl+5)(1+?)(1+r)Ti+81-5)(1+?)(1+5)Tj+itl-5)(1-?)(1+i)Tk 
+it1 +O(l-~)(l + C ) T + 8 1  +<)(I +?)(1-OTm+it1 -<)(I + 
+ a 1  - ()( 1 - ?)( 1 - 5)To + 8 1  + 5)(1- ?)(1- r )T,  = NiT + NjTj 

+N~T,+N~IT;+N,T,+N,T,,+N,T,+N,T, 

-[IT,, 

where 4 = 2(x-xC)/(Ax); q = 2(y-yC)/(Ay); = 2(t-tC)/(At); xc, y,,tc = co-ordinates of the 
centroid of each element; T ,  T j ,  &, ?;, T,, T,,, T,, T, = values of temperatures at the appropriate 
nodal points (Figure 2); Ni, Nj, Nk,  N,, N,, N,, No, N, = shape functions; Ax = x-co-ordinate 
spacing; Ay = y-co-ordinate spacing; At = t-co-ordinate spacing; and i, j, k, I, m, n, 0, p = node 
numbers. 

The first two-dimensional heat conduction problem to be solved is one governed by equation 
(1) and subject to the following boundary and initial conditions 

T(0, y ,  t) = T(x, 0, t )  = T(L,, y, t )  = T(x, Ly,  t) = 0 
and 

T(x,y,O) = 30 

where L, and L, are the lengths of the solution domain in the x and y directions, respectively. 
The analytical solution for this problem is 

nnx jny w m  

T(x, y, t) = c c A,  sin L, sin ~ exp 
n = l  j = l  LY 

(7) 
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where 

A ,  = 4(30)[(-1)”-1][(--1)j-l] 
nJn 

Table I lists the analytical results using equation (7) for the square domain 0 < x < 3.0m, 
0 < y < 3.0 m, with k ,  = k, = 1-25 Btu/(hr m O F ) ,  A x  = Ay = 0.3 m, and t = 1.2 hr. Tables I1 
and 111 list the finite element weighted residual solution for the same problem using two different 
time steps Ar = 0.1 hr and At = 0.05 hr, respectively. 

Table 1. Temperatures at t = 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0~000 
0.000 
0.000 

0.000 
0.173 
0.329 
0.453 
0.533 
0.560 
0.533 
0.453 
0.329 
0.173 
0.000 

0.000 
0.329 
0.626 
0.862 
1.013 
1.065 
1.013 
0.862 
0.626 
0.329 
0.000 

0.000 
0.453 
0.862 
1.186 
1.394 
1.466 
1.394 
1.186 
0.862 
0.453 
0.000 

1.2 hr obtained using the analytical solution equations (7) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.533 0.560 0.533 0.453 0.329 0.173 0.000 
1.013 1.065 1.013 0.862 0.626 0.329 0.000 
1.394 1.466 1.394 1.186 0.862 0.453 0.000 
1.639 1.723 1.639 1.394 1.013 0.553 0.000 
1.723 1.812 1.723 1.466 1.065 0.560 0.000 
1.639 1.723 1.639 1.394 1.013 0.533 0.000 
1.394 1.466 1.394 1.186 0.862 0.453 0.000 
1.013 . 1.065 1.013 0.862 0.626 0.329 0.000 
0.533 0.560 0.533 0.453 0.329 0.173 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 11. Temperatures at t = 1.2 hr obtained using the finite element technique with At = 0.1 hr 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.201 0.383 0.527 0.620 0.652 0.620 0.527 0.383 0.201 0.000 
0.000 0.383 0.728 1.003 1.179 1.239 1.179 1.003 0.728 0.383 0.000 
O@OO 0.527 1.003 1.380 1.622 1.706 1.622 1.380 1.003 0.527 0.000 
O@OO 0.620 1.179 1.622 1.907 2.005 1.907 1.622 1.179 0.620 0.000 
0.000 0.652 1.239 1.706 2.005 2.108 2.005 1.706 1.239 0.652 0.000 
0.000 0.620 1.179 1.622 1.907 2.005 1.907 1.622 1.179 0.620 0.000 
0.000 0.527 1.003 1.380 1.622 1.706 1.622 1.380 1.003 0.527 0.000 
0.000 0.383 0.728 1.003 1.179 1.239 1.179 1.003 0.728 0.383 0.000 
0.000 0.201 0.383 0.527 0.620 0.652 0.620 0.527 0.383 0.201 0.000 
0.000 0.000 0.000 o.Oo0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 111. Temperatures at t = 1.2 hr obtained using the finite element technique with At = 0.05 hr 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0~000 
0.000 

0.000 
0.185 
0.352 
0.485 
0.570 
0.599 
0.570 
0.485 
0.352 
0.185 
0.000 

0.000 
0.352 
0.670 
0.922 
1.083 
1.139 
1.08 3 
0.922 
0.670 
0.352 
0.000 

0.000 
0.485 
0.922 
1.268 
1.49 1 
1.568 
1.491 
1.268 
0.922 
0.485 
O.Oo0 

O.Oo0 
0.570 
1.083 
1.49 1 
1.753 
1.843 
1.753 
1.491 
1.083 
0.570 
0.000 

0.000 
0.599 
1.139 
1.568 
1.843 
1.938 
1.843 
1.568 
1.139 
0.599 
0.000 

0.000 
0.570 
1.083 
1.491 
1.753 
1.843 
1.753 
1.491 
1.083 
0.570 
0.000 

0.000 
0.485 
0.922 
1.269 
1.491 
1.568 
1.491 
1.269 
0.922 
0.485 
0.000 

O.Oo0 
0.352 
0.670 
0.922 
1.083 
1.139 
1.083 
0.922 
0.670 
0.352 
0.000 

0.000 
0.185 
0.352 
0.485 
0.570 
0.599 
0.570 
0.485 
0.352 
0.185 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0w0 
0000 
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A second example will be one governed by equation (1) and subject to the initial condition, 

( 8 4  

equation (6b), and the following boundary conditions 

T ( x ,  0, t )  = T(L,, y ,  t )  = T(x ,  L,, t )  = 0 

and 

The analytical solution for the problem is 

where 

Table IV lists the analytical results using equations (9) for the square domain 0 d x d 3.0 m, 
0 d y d 3.0 m, with k ,  = k ,  = 1.25 Btu/(hr m O F ) ,  A x  = A y  = 0.3 m, and t = 1.2 hr. Tables V 
and V1 list the finite element weighted residual solution for the same problem using two different 
time steps At = 0.1 hr and At = 0.05 hr, respectively. 

Table IV. Temperatures at t = 1.2 hr obtained using the analytical solution equations (9) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1.899 1.878 1.815 1.710 1.563 1.377 1.153 0.897 0.614 
3.612 3.572 3.452 3.252 2.973 2.618 2.193 1.705 1.167 
4.972 4.916 4.751 4.476 4.092 3.604 3.018 2.347 1.606 
5.844 5.780 5.585 5.261 4.810 4.237 3.548 2.759 1.888 
6.145 6.077 5.872 5.532 5.058 4.455 3.731 2.901 1.985 
5.844 5.780 5.585 5.261 4.810 4.237 3.548 2.759 1.888 
4.972 4.916 4.751 4.476 4.092 3.604 3.018 2.347 1.606 
3.612 3.572 3.452 3.252 2.973 2.618 2.193 1.705 1.167 
1.899 1.878 1.815 1.710 1.563 1.377 1.153 0.897 0.614 
0.000 0.000 0.000 0*000 0.000 0.000 0.000 0.000 0.000 

0.000 0.000 
0.312 0.000 
0.593 0.000 
0.816 0400 
0.959 O@OO 
1.009 0.000 
0.959 0.000 
0.816 0.000 
0.593 0.000 
0.312 0.000 
0.000 0.000 

Table V. Temperatures at t = 1.2 hr obtained using the finite element technique with At = 0.1 hr 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2.028 2.006 1.940 1.830 1.677 1.480 1.242 0.967 0.663 0.337 0.000 
3.857 3.815 3.690 3.482 3.189 2.815 2.362 1.840 1.261 0.641 0.000 
5.308 5.251 5.079 4.792 4.390 3.874 3.251 2.533 1.736 0.882 0.OOO 
6.240 6.173 5.971 5.633 5.160 4.554 3.822 2.977 2.040 1.037 0.000 
6.561 6.491 6.278 5.923 5.426 4.788 4.019 3.131 2.145 1.091 0.OOO 
6.240 6.173 5.971 5.633 5.160 4.554 3.822 2.977 2.040 1.037 0.000 
5.308 5.251 5.079 4.792 4.390 3.874 3.251 2.533 1.736 0.882 0.000 
3.857 3.815 3.690 3.482 3.189 2.815 2.362 1.840 1.261 0.641 0.000 
2.028 2.006 1.940 1.830 1.677 1.480 1.242 0.967 0.663 0.337 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table VI. Temperatures at t = 1.2 hr obtained using the finite element technique with At = 0.05 hr 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1.951 1.929 1.865 1.758 1.609 1.418 1.189 0.925 0.633 0.322 O@OO 
3.711 3.670 3.548 3.344 3.060 2.697 2.261 1.760 1.205 0.612 0.000 
5.107 5.051 4.883 4.603 4.212 3.713 3.112 2.422 1.658 04343 O@OO 
6.004 5.938 5.741 5.411 4.951 4.364 3.659 2.847 1.950 0.991 0.000 
6.313 6.244 6.036 5.690 5.206 4.589 3.847 2.994 2.050 1.042 O@OO 
6.004 5.938 5.741 5.411 4.951 4.364 3.659 2.847 1.950 0.991 0.000 
5.107 5.051 4.883 4.603 4.212 3.713 3.112 2.422 1.658 0.843 0.000 
3.711 3.670 3.548 3.344 3.060 2.697 2.261 1.760 1.205 0.612 0.000 
1.951 1.929 1-865 1.758 1.609 1-418 1.189 0.925 0.633 0.322 O~OOO 
0.000 0~000 0.000 0.000 0.000 O.Oo0 0.000 0.000 0*000 0.000 0.000 

The last example will be one governed by equation (1) and subject to the following boundary 
and initial conditions 

T(L, ,  y ,  t )  = T ( x ,  L,, t )  = 1.0 (104 

and 

T(x,y,O) = 0.0 (10c) 
This example describes the unsteady heat conduction in a long bar of square cross-section. In 
order to check these results with those of Carnahan et a],' who used an implicit alternating 
direction finite difference method, it is assumed that all the constants are 1-0 and the dependent 
and independent variables are dimensionless in equations (l), (lo), and (1 1). The analytical 
solution for this problem is 

(2n - 1)nx (2j-  1)ny k,(2n - 1)2n2 w w  

[ - ( 4L: 
T(x, y ,  t )  = 1.0+ 1 1 cncos cos 

n =  1 j =  1 2LX 2LY 

where 

16.0( - 1.0)( - l ) n + l (  - l)j+l cn = 
n2(2n- I)(&- 1) 

Table VII lists the analytical results using equations (11) for the square domain 0 < x < 1.0, 
0 < y < 1.0, with k ,  = k ,  = 1.0, A x  = A y  = 0.1, and t = 0-75. Table VIII lists the finite element 
weighted residual solution for the same problem using a time step At  = 0.05. Table IX lists the 
results of Carnahan et a]' who used an implicit alternating direction finite difference method 
with the same time step. 

The finite element scheme used in the above examples is an implicit scheme and is stable. For 
the element size used, the results check closely with the analytical results, e.g. in the second 
example using a At = 0.05 hr, the maximum deviation from the analytical results was about 2.73 
per cent. By decreasing the element size, the finite element solution will converge to the exact 
solution. This can be seen from comparing Tables I1 and I11 with Table I, and Tables V and VI 
with Table IV in which only the time step size was decreased. 
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Table VII. Dimensionless temperatures at t = 0.75 obtained using the analytical solution Equations (11) 

0.960 0.960 0.962 0.964 0.968 0.972 0.976 0.982 0.988 0.994 1.000 
0.960 0.961 0.962 0.965 0.968 0.972 0.977 0.982 0.988 0.994 1.000 
0.962 0.962 0.964 0.966 0.969 0.973 0.978 0.983 0.988 0.994 1.000 
0.964 0.965 0.966 0.968 0.971 0.975 0.979 0.984 0.989 0.994 1.000 
0.968 0.968 0.969 0.971 0.974 0.977 0.981 0.985 0.990 0.995 1.000 
0.972 0.972 0.973 0.975 0.977 0.980 0.983 0.987 0.991 0.996 1.000 
0.976 0.977 0.978 0.979 0.981 0.983 0.986 0.989 0.993 0.996 1.000 
0.982 0.982 0.983 0.983 0.985 0.987 0.989 0.992 0.994 0.997 1400 
0.988 0.988 0.988 0.989 0.990 0.991 0.993 0.994 0.996 0.998 1.000 
0.994 0.994 0.994 0.994 0.995 0.996 0.996 0.997 0.998 0.999 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table VIII. Dimensionless temperatures at t = 0.75 obtained using the finite element technique with 
At = 0.05 

0.953 0.953 0.955 0.958 0.962 0.967 0.972 0.979 0.985 0.993 1.000 
0.953 0.954 0.956 0.958 0.962 0.967 0.973 0.979 0.986 0.993 1.000 
0.955 0.956 0.957 0.960 0.964 0.968 0.974 0.980 0.986 0.993 1.000 
0.958 0.958 0.960 0.962 0.966 0.970 0.975 0.981 0.987 0.993 1.000 
0.962 0.962 0.964 0.966 0.969 0.973 0.977 0.983 0.988 0.994 1.000 
0.967 0.967 0.968 0.970 0.973 0.976 0.980 0.985 0.990 0.995 1.000 
0.972 0.973 0.974 0.975 0.977 0.980 0.984 0.987 0.991 0.996 1,000 
0.979 0.979 0.980 0.981 0.983 0.985 0.987 0.990 0.993 0.997 1.000 
0.985 0.986 0.986 0.986 0.988 0.990 0.991 0.993 0.995 0.998 1.000 
0.993 0.993 0.993 0.993 0-994 0.995 0.996 0.997 0.998 0.999 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table IX. Dimensionless temperatures at t = 0.75 obtained by Carnahan et all using an implicit alternating 
direction finite difference method with At = 0.05 

0.960 
0.96 1 
0.962 
0.964 
0.968 
0.972 
0.976 
0.982 
0.987 
0.994 
1 .000 

0.96 1 
0.96 1 
0.962 
0.965 
0.968 
0.972 
0.977 
0.982 
0.987 
0.994 
1 .ooo 

0.962 
0.962 
0.964 
0.966 
0.969 
0.973 
0.978 
0.983 
0.988 
0.995 
1 .ow 

0.964 
0.965 
0.966 
0.968 
0.971 
0.975 
0.979 
0.984 
0.988 
0.995 
1 .000 

0.968 
0.968 
0.969 
0.971 
0.974 
0.977 
0.981 
0.986 
0.990 
0.995 
1 .ooo 

0.972 
0.972 
0.973 
0.975 
0.977 
0.980 
0.983 
0.987 
0.99 1 
0.996 
1.000 

0.976 
0.977 
0.978 
0.979 
0.981 
0.983 
0.986 
0.990 
0.992 
0.997 
1.000 

0.982 
0.982 
0.983 
0.984 
0.986 
0.987 
0.990 
0.992 
0.994 
0.997 
1.000 

0-987 
0.987 
0.988 
0.988 
0.990 
0.99 1 
0.992 
0.994 
0.996 
0.998 
1 .000 

0.994 
0.994 
0.995 
0.995 
0.995 
0.996 
0.997 
0.997 
0.998 
0.999 
1.000 

1 .000 
1 .000 
1.000 
1.000 
1 .ooo 
1.000 
1 .000 
1.000 
1,000 
1.000 
1 .ooo 

As is evident from Tables VIII and IX, both the finite element technique and the implicit 
alternating direction finite difference method compare within a fraction of a per cent with the 
analytical results. 

Since both the implicit alternating direction finite difference method and the finite element 
method used on example three are stable methods, they exhibited, for the rather large time step 
used, the phenomenon of giving impossible temperatures, greater than 1, just inside the surface 
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of the bar at the end of the first time step.’ An oscillation of decreasing amplitude in the tempera- 
ture took place for a number of time steps and then disappeared. The amplitudes of the tempera- 
tures in the oscillations for the finite element case were less and disappeared sooner than for the 
finite difference method. 

As another example of the application of the technique, the following problem with sharp 
corners in the boundary is investigated, see Figure 3. Consider finding T(x,  y ,  t )  satisfying the 
equation 

V Z T = -  aT 
at 

in the domain R, shown in Figure 3, with the boundary conditions 

T(O, y ,  t )  = 1,000 

T(1, y ,  t )  = 0 

( 124 

( 12b) 
and aT/an = 0 on all other boundaries, where a/an is the derivative normal to the boundary. 
The initial condition is a small time solution in a plane medium and is taken to be 

T(x, y ,  0) = erfc ~ 

( 2 2  
where t = 0.0005 and is equivalent to one time step in the numerical solutions that follow. 

Figure 3. Solution domain 

G. E. Bell” presents a method for treating the singularities which occur in the solution to this 
problem due to the sharp corners in the boundary. His method is essentially an extension of the 
method due to M o d 3  for solving elliptic problems and approximates to the analytical form of 
the singularity in terms of neighbouring function values at each time step. His method is used in 
conjunction with the simple explicit finite-difference scheme and subsequently the overall method 
is explicit. 

 bell'^'^ results (using 5 term approximation, 6 term approximation, and simple explicit 
schemes) are given in Table X along with results obtained herein using the finite element space- 
time co-ordinate method for the x and y spacings and time step shown. 

A second example solved by Bell” is that shown in Figure 4. Here the singularities are closer 
together and this severely restricts the number of terms that can be used in the approximation. 
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403 

408 

407 

418 

416 

427 
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Table X. Solution corresponding to a time of 0.1 sec (200 time steps) 

403 286 

406 288 

406 287 

416 291 

417 290 

423 293 

404 403 287 286 192 120 68 842 
1000 ~- 

842 

842 

842 
- 

845 

845 
- 

855 

856 
- 

871 

873 
- 

888 

890 
- 

895 

897 
- 

688 687 

686 
- 

692 

692 
- 

71 1 

713 
- 

749 

755 
- 

795 

800 
- 

813 

817 
- 

540 

540 
- 

546 

545 
- 

568 

566 
- 

63 5 

635 
- 

762 

767 
- 

787 

79 1 
- 

539 192 120 

191 120 

191 119 

68 30 

67 30 

66 29 

30 

30 
0.000 

688 

694 

694 
- 

714 

538 

544 

544 
- 

565 

285 192 

287 192 

119 68 

119 66 846 

846 
lo00 

29 

29 
0.000 

65 29 

61 26 

287 191 

290 190 

289 190 

292 189 

190 118 

190 112 

188 112 

187 88 

117 66 

112 60 

1 1 1  59 

91 46 

856 

857 
lo00 

27 

25 
0.000 

715 

756 

566 

622 

59 26 

48 21 874 

875 
lo00 

21 

20 
0.000 

758 

80 1 

805 
- 

818 

634 

752 

762 

780 

787 

424 425 291 291 188 186 86 

38 

36 

29 

27 

86 45 

41 30 

45 20 

31 15 89 1 

892 
lo00 

16 

15 
0.000 

36 28 

31 24 

29 14 

25 13 898 

899 
1000 

13 

13 
0.000 

822 28 23 23 12 

5 term 
approx. 

Simple 
Explicit 

6 term 
approx. 

Finite element 
(space-time 
co-ordinates) AX = Ay = 0.05 

At = 0.0005 

-X 
0 (04,O) (0.6,O) (1,O) 

Figure 4. Solution domain 
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Finite element 
(Wilson & Nickell) 
AX = Ay = 0.1 

However, using a point configuration similar to the one he used on the previous example, he 
obtained the results shown in Table XI. These results are approximately equal to those he 
obtained using a 6 term approximation and a mesh, Ax = Ay = 0.025. 

Also tabulated in Table XI are results obtained by Be1112 using the standard explicit method, by 
Wilson and Nickel12 using a finite element scheme in which triangular elements of side 0.1 with 
linear shape functions were used, and by the finite element techniques given herein. 

If k,  = $1 T and k, = $zT are inserted into equation (l), it becomes the non-linear partial 
differential equation 

Finite element 
(Space-time co-ordinates) 
AX = Ay = 0.1 

where 11/1 and $z are assumed to be constants. Take $1 = t)2 = 1.0 (Btu/hr m°F2), Q = 0, 
pc = 1.0 (Btu/m2 O F ) ,  and the following auxiliary conditions 

T(O,y, t )  = T(x,O, t )  = T(L, ,y ,  t )  = T(x ,  L,, t )  = 1.0 

T(x ,  y ,  0) = 0.1 

(134 

(1 3b) 
The system of non-linear algebraic equations that results from the application of the finite element 
scheme was solved using a computer program given by P0we1l.l~ The results are presented in 
Tables XI1 and XI11 for t = 0-2 hr and t = 0-4 hr, respectively. 

and 

Table XI. Solution corresponding to a time of 0.1 sec with At = O W 0 5  

I05 466 402 276 223 223 176 136 106 175 137 

176 

168 129 

408 

481 414 

110 

128 100 

I05 

99 

277 

278 221 

278 219 

178 

218 170 

217 148 560 557 506 t 555 556 

92 

92 

- 

85 

503 449 114 92 

100 

101 84 

147 114 

147 

107 98 

279 156 

105 

446 

524 515 

534 527 

446 285 

509 

52 1 98 99 93 94 81 83 

505 522 118 

6 term approx. 1 Finite element 
99 90 87 571 565 

.. 

Ax = Ay = 0.05 (Space-time co-ordinates) 
AX = Ay = 0.05 
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Table XII. Temperature at t = 0.2 hr obtained using the finite element technique with 
At = 0.1 hr 

1.000 
1.000 
1.000 
1.000 
1 m o  
1 .ooo 
1.000 
1 .ooo 

1.000 
0.944 
0.892 
0.853 
0.853 
0.896 
0.950 
1.000 

1.000 
0.889 
0.776 
0.683 
0.682 
0.784 
0.904 
1.000 

1.000 
0.845 
0.674 
0.519 
0.513 
0.677 
0.859 
1.000 

1.000 
0.845 
0.673 
0.516 
0.510 
0.675 
0.858 
1 .ooo 

1~000 
0.888 
0.774 
0.679 
0.677 
0.780 
0.902 
1.000 

1.000 
0.943 
0.891 
0.852 
0.852 
0.896 
0.950 
1.000 

1 .ooo 
1.000 
1 .ooo 
1.000 
1 .ooo 
1.000 
1 .ooo 
1.000 

Table XIII. Temperature at t = 0.4 hr obtained.using the finite element technique with 
At = 0.1 hr 

1 .ooo 
1 .ooo 
1.000 
1~000 
1.000 
1.000 
1.000 
1 .ooo 

1.000 
0.988 
0.980 
0.976 
0.976 
0.982 
0.99 1 
1.000 

1.000 
0.979 
0.964 
0.957 
0.958 
0.968 
0.984 
1.000 

1.000 
0.973 
0.954 
0.943 
0.944 
0.957 
0.978 
1.000 

1.000 
0.973 
0.954 
0.943 
0.944 
0.957 
0.978 
1.000 

1.000 
0.979 
0.964 
0.956 
0.958 
0.968 
0.984 
1.000 

1.000 
0.988 
0.980 
0.976 
0.976 
0.982 
0.99 1 
1.000 

1 .ooo 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1 .ooo 

CONCLUSIONS 

A solution has been given for two-dimensional linear and non-linear transient heat conduction 
problems using a finite element weighted residual process. The solution domain was divided 
into finite elements having space-time co-ordinates. The results for several examples compare 
favourably with the corresponding analytical and numerical results. This method is flexible in 
that it does not require constant parameters over the entire solution domain and isoparametric 
elements" can be used. Furthermore, the method is easily programmed, stable, computationally 
fast, and converges to the exact solution. 
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APPENDIX 

Notation 

A ,  = Function identifier 
B, = Function identifier 
C ,  = Function identifier 

c = Specific heat 
i = Node number 
j = Node number 
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k = Node number 
k, = Thermal conductivity in x-direction 
k, = Thermal conductivity in y-direction 
L, = Length of solution region in x-direction 
L, = Length of solution region in y-direction 

I ,  = Direction cosine 
I ,  = Direction cosine 

I = Node number 
m = Node number 

N ,  = Shape function 

n = Node number 
o = Node number 
p = Node number 
Q = Externally applied heat flux 
q = Intensity of heat input 
R = Solution domain 
R‘ = Finite element solution domain 
S = Boundary surface 

S ,  , S ,  , S ,  = Lengths of boundary surface 
S’ = External surface area of the finite element solution region 

S; , S2, S; = Segments of external surface area 
T = Temperature 
T,  = Temperature of the surroundings 

T, = Given boundary surface temperature 
t = Time axis 

t, = Distance to centroid in t-direction 
x = Co-ordinate axis 

x, = Distance to centroid in x-direction 
y = Co-ordinate axis 

y, = Distance to centroid in ydirection 
ct = Heat transfer coefficient 
l = t-direction shift of axis to centroid of the rectangular prism 

element 
5 = x-direction shift of axis to centroid of the rectangular prism 

element 
q = y-direction shift of axis to centroid of the rectangular prism 

element 
p = Density 

= Constants 

Ni, N , ,  N , ,  N , ,  N , ,  N , ,  N o ,  N ,  = Shape functions 

IT;., T j ,  6 ,  T ,  T,, T,, T,, T, = Value of temperature at appropriate nodal points 
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